Journal of Organomeiallic Chemistry, 94 (1975) **l-6 0 Elsevier Sequoia S-A, Lausanne - Printed in The Netherlands**

GEOMETRY OPTIMISED AB INITIO MOLECULAR ORBITAL STUDIES OF THE SERIES A_nBF_{3-n} $(A = CH_3, C_2H_3; n = 0.3)$

.

N. J. FITZPATRICK* and N. J. MATHEWS

Department of Chemistry, University College. Belfield. Dublin 4 (Ireland) **(Received February 19th, 1975)**

Summary

Geometry optimised ab initio calculations are reported for two series of trigonal boron compounds. The extent of π bonding between boron and carbon **for the vinyl series is shown to be much less than between boron and fluorine but nevertheless to exert a strong influence on the B-C bondlength. Good linear correlations between NMR experimental parameters and electronic populations for B and F are noted and some predictions are made.**

The extent of π bonding between trigonal boron and carbon has long been **of interest. Coyle, Stafford and Stone [l] discussed the chemical and spectroscopic evidence for such bonding. More recently, Holliday and Reade [Z],** through a comparison of the photoelectron spectra of $(C_2H_3)_3B$ and $(C_2H_5)_3B$, **suggested that there was limited conjugation in the former. However, evidence** for B-C π bonding was later presented from infrared, Raman and electron dif**fraction data [3]. Geometry optimised ab initio studies of** ABF_2 **(A = H, CH₃, C&H,, C2H5, F) have been reported 141.**

Method

The Gaussian-70 computer program of Pople and coworkers [5] with a minimal STO-3G basis set [6] was used. C-H bond distances (1.09 Å), tetrahedral (109.5°) angles at carbon and trigonal (120°) angles at C and at B in A₃B were preserved constant throughout. D_{3h} symmetry was used in $(C_2H_3)_3B$ and substituting F for a vinyl group gave the conformation of $(C_2H_3)_2BF$ – the so**called 'swastika' conformation.**

Results and discussion

Geometry. The optimised bond lengths and angles are in Tables 1 and 2. In all compounds $r(B-F)$ is approximately constant. The insensitivity of the $B-F$:

TABLE 1

 \mathbf{z}

BOND LENGTHS (A)

TABLE 2

ż

 $\ddot{}$

BOND ANGLES (°)

TABLE 3

GROSS ATOMIC CHARGES

TABLE 4

GROSS ORBITAL POPULATIONS

bondlength to change in electronic environment was also noted by Becher [7] : in a force constant study of methylboranes. The significant decrease in $r(B-C)$ **from methyl to vinyl series has been noted experimentally 133 as also the in-:** crease in $r(C-C)$ relative to ethylene (optimised $r(C-C)$ in ethylene is 1.310.A [8]). These effects can be explained by a closer look at the electronic structures **of the compounds.**

-:

-3.

Electronic distributions. **The gross atomic charge on boron is positive in all cases and decreases (linearly for the vinyl series) as fluorines are substituted by A moieties. As expected, the fluorine charges are negative and their absolute** values decrease from $BF₃$ to $A₂BF$, the variations being essentially the same in **both series. Thus the absolute A charges are higher in the methyl series. The varia**tions in q_A across the series are not monotonic, A_2BF having the largest absolute value in both cases. $C\beta$ in the vinyl series has a constant negative charge whose absolute value is less than that on each C in ethylene. $(q_c = -0.125)$ [8]. The absolute values of $q_{\text{C}\alpha}$ and q_{C} decrease with increasing vinylation and methyla**tion respectively.**

Further insight into the charge distribution is obtained from the σ and π **gross atomic populations (Table 4). The total electronic population on B is due** to increasing σ and decreasing π contributions across both series. The former dominates and thus q_B decreases. The greater total atomic populations for the vinyl borons result from the π electron delocalization from the vinyl group. The similarities in q_F arise from increasing σ and decreasing π populations almost **cancelling each other in both series.**

The general decreases in the F π gross atomic populations across each series **are due to a decrease in the number of F atoms bonded to B thus allowing in**creasing $\mathbf{F} \rightarrow \mathbf{B} \pi$ donation across the series. Since F is a stronger π donor than either of the organic moieties (Table 5), the B π populations decrease from BF₃ to A_3B . The decreased F π donation with coordinated vinyl groups compared to methyl groups is a direct result of greater π donation to B from the vinyls. The constant σ and π gross orbital populations are reflected in the charge on C β while the decreasing absolute charge on C_{α} shows the increased delocalization with **increased vinylation. The trend in o electron flow follows from variations in electronegativity of the atoms bonded directly to B.**

The overlap populations show definite trends (Table 6). Both σ and π , **B-F and B-C, overlap populations (o.p_'s) increase as the number of F atoms** decreases. The $B-C \pi$ o.p.'s are less than half the $B-F \pi$ values. The total o.p.'s

TABLE5

ELECTRON DONATIONS

TABLE 6

OVERLAP POPULATIONS

for the methyl series are equal to the corresponding σ o.p.'s in the vinyl series; thus the decreases in B-C bondlengths from methyl to vinyl are due to π overlap contributions. The $C-C\pi$ o.p. is less than the corresponding ethylene value (0.400) [8].

The ionization potentials (Koopmans' Theorem) for $(CH_3)_nBF_{3-n}$ $(n = 1-3)$ are 10.83, 9.83 and 10.45 eV respectively, where ionization in each case is from a σ orbital. The corresponding values in the vinyl series are 9.14, 8.63 and 8.40 eV where ionization is from a C-C bonding π orbital.

Fig. 1. Regression analysis between $\delta(^{19}F)$ and total F 2pn overlap population for BF3, CH3BF2, (CH3)2BF, $C_2H_3BF_2$, $C_2H_5BF_2$ and HBF_2 .

NMR

..--

_-

4 number of regressipn analyses were performed to study the relatiok between published NMR parameters and the ab initio populations.

(a). An analysis on BF_3 , CH_3BF_2 , $(CH_3)_2BF$, $C_2H_3BF_2$, $C_2H_5BF_2$ and HBF_2 showed a good linear correlation $(r = 0.965)$ between $J(^{11}B^{-19}F)$ and total B-F **overlap population.**

.5

 $\{ \ldots \}$.

(b). For the same series of compounds an analysis of $\delta({}^{19}F)$ against F $2p\pi$ gross orbital populations gave a strong linear correlation (Fig. 1).

 $\delta(^{19}F) = 1804$ (F $2p\pi$ o.p.) – 3307 (r = 0.991).

Thus for $(C_2H_3)_2BF$ the predicted value of the fluorine chemical shift is -89.9 **ppm-**

(c). To the above series was added $(CH_3)_3B$ and $(C_2H_3)_3B$ for an analysis of $\delta({}^{11}B)$ against B $2p\pi$ gross orbital populations.

 $\delta(^{11}B) = 189 \ (B \ 2p\pi \ o.p.) - 87 \qquad (r = 0.985).$

The boron chemical shift for $(C_2H_3)_2BF$ is therefore predicted to be 22 ppm. The intercept gives the chemical shift for BH_3 as -87 ppm (Fig. 2).

Fig. 2. Regression analysis between $\delta({}^{11}B)$ and total B $2p\pi$ population for BF₃. CH₃BF₂. (CH₃)₂BF, C₂H₃ BF₂, C₂H₅BF₂, HBF₂, (CH₃)₃B and (C_2H_3) ₃B.

References

6

.

:I- _ :

:-

- 1 T.D. Coyle, S.L. Stafford and F.G.A. Stone, J. Chem. Soc., (1961) 3103.
- 2 A.K. Kolliday and W. Reade, Chem. Commun., (1971) 51.
- 3 A.K. Holliday, W. Reade, K.R. Seddon and I.A. Steer. J. Organometal. Chem., 67 (1974) 1.
- **4 N-J. Fitzpatrick and N-J- Mathews. Proc. XvItb Int Coti. Coord_ Chem.. Dublis 19'74.2.2a_**
- **5 .W.J- lIeI&=, W-A- Latkm. R- IktchfieId. M.D. Newton and J-A. PopIe. Q.C.P_E_ Rogam No. 236_**
- **6 W-J- H&m% R-F-** *Stewart and* **J-A- Pople. J- Chem.. Phyr. 51 (1969) 2657: W-J_ Hehre. R. Ditcbfidd. R-F_ Stewart and J-A. Pople. x%id.. 52 (1970) 2191.**
- **7. ELJ- Eecher. Z- Ano% AIlg- Chem_. (1957) 291.**
- **8 N-J_ Mathews. unpublished results_**